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Mechanism equivalence in enzyme–substrate reactions:
Distributed differential delay in enzyme kinetics
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We consider single enzyme–substrate reaction mechanisms involving multiple com-
plexes and demonstrate that these are equivalent to a distributed delay system without
complexes. The distribution of the delay is determined by the number of intermediates
and the relative sizes of the rates of the individual reaction mechanisms. We also con-
sider the limit where there are a large number of intermediate complexes, and the condi-
tions under which a number of known reaction mechanisms are equivalent. The present
formalism brings forth new perspectives in the implementation of experimental tech-
niques to rule out particular reaction mechanisms by studying the distribution of the
delay between reactant mixing and product formation.
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1. Introduction

In the 19th century, the first scientists studying enzyme kinetics of the sin-
gle enzyme–substrate reaction experienced a number of difficulties. The experi-
mental practice was to follow the reaction over an extended period of time, and
to explain observations in terms of the solutions of second-order rate equations
used in chemical kinetics. But then, the British chemist Brown [1] found that the
rate of enzyme-catalysed reactions deviated from second-order kinetics. In 1902,
Brown [2] proposed the existence of an enzyme–substrate complex in a purely
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kinetics context with a fixed lifetime to form the product. This was the first time
that the existence of the enzyme–substrate complex was proposed in an enzy-
matic reaction. Brown’s model was criticised [3,4] for being intuitive and lack-
ing mathematical foundation. Brown’s chemical mechanism consists of a reaction
between an enzyme E and a substrate S, forming the enzyme–substrate complex
E · S, which yields with a delay the product P :

S + E
k→ E · S

delay→ E + P. (1)

Historically, this criticism is understandable as systems with delays were first
studied in various disciplines during the years 1920–1940 [5], led by the pio-
neer work of Sharpe and Lotka [6] and Volterra [7] in epidemiology and ecology.
Brown’s model of enzyme action was succeeded by the Henri [8–10] mechanism
which follows a mass-action kinetics. This model is conventionally attributed to
Michaelis and Menten [11] although these authors clearly recognised Henri as
the originator.

Brown could be credited with formulating the essential ideas of the Henri–
Michaelis–Menten mechanism of enzyme action [12]. We can also acknowledge
him as the first biochemist to propose a delayed effect in chemical kinetics. His
contribution should not be underestimated, because there is nowadays a great
interest in the application of delayed differential equations (DDEs) for studying
model reduction in chemistry [13, and references therein] and in gene transcrip-
tion regulation [14–16, and references therein]. Moreover, a mathematical for-
mulation of Brown’s model has recently been developed to study the chemical
acceptability of delayed-mass action models [17].

In modelling a chemical system, it is sometimes necessary to take into
account the time delays inherent to the system under consideration. On the other
hand, the inclusion of the delay is more often introduced to simplify the mathe-
matical description of a kinetic model or because there are details in the reac-
tion mechanism which are unknown. As far as we know, Ninio [18] was the
first biochemist to construct a delayed enzyme–substrate reaction by sequences
of conventional elementary chemical steps involving the non-allosteric binding of
several substrates to a multimeric enzyme. This is nowadays a well-known result:
an irreversible linear chain of reactions:

k0→ C1
k1→ C2

k2→ · · · kn−1→ Cn

kn→, (2)

in which all the rate constants are the same (ki = k) can be described by a dif-
ferential delay equation with a γ -distributed delay [5,13,19,20].

One of the major difficulties in the study of a reaction mechanism evolves
around the modelling of chemical intermediates. They are generally in low con-
centrations at the reaction media and their lifetime is very brief [21]. Therefore,
their existence is often inferred rather than observed. For this reason, there is
a tradition in chemistry to propose a reasonable minimal model in which it is
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necessary to include some unobserved intermediate [22]. Consider the reversible
enzyme–substrate Michaelis–Menten reaction:

S + E
k0

�
k−0

E · S
k1

�
k−1

E + P, (3)

where ki are positive rate constants. To obtain a reasonable minimal model of a
real enzymic reaction biochemists have postulated an enzyme–product complex
arising from the enzyme–substrate complex by an intramolecular reaction, which
constitutes the essential catalytic step, e.g. [23,24]. The simplest possible overall
mechanism is then

S + E
k0

�
k−0

E · S
k1

�
k−1

E · P
k2

�
k−2

E + P. (4)

In this reaction, transition state activated complexes are involved at each revers-
ible reaction step. However, the latter reaction is indistinguishable kinetically
from the simpler scheme (3) under quasi-steady-state studies [4]. Reactions (3)
and (4) would also be indistinguishable kinetically in quasi-steady-state studies
from the Van Slyke–Cullen reaction mechanism [25]:

S + E
k0→ E · S

k1→ E + P, (5)

if k−i are small and the initial product concentration is zero.
To reinforce these statements on distinguishable and equivalent reactions we

should call attention to Cleland’s dictum that nothing which takes place within
a “central complex” (equivalent to the enzyme–substrate complex) can possibly
affect the rate law [12]. Moreover, it has been shown in a number of chemical
reactions [17,22,26] that we can replace an intermediate by a delay term preserv-
ing the dynamical behaviour of the model.

In the case of enzyme catalysed reactions, the intermediate steps between
the reactants and products are the most interesting and important to understand
the process of catalysis [21]. A number of experimental techniques such as rapid
mixing, sampling techniques, flash photolysis and relaxation methods [27] have
been developed to study in detail these events. However, the kinetics aspects of
distinguishable or equivalent enzyme kinetics mechanisms in our opinion remain
inadequately understood and analysed. Particularly the criteria require to distin-
guish mechanisms with various enzyme–substrate complexes or intermediates. In
this paper, we consider the single enzyme–substrate reaction mechanism origi-
nally proposed by Van Slyke and Cullen [25] involving multiple and fast enzyme–
substrate complexes. We derive criteria for the equivalence of mechanisms with
multiple intermediates employing distributed delay systems. We pay special atten-
tion to how the delay is related to the reaction parameters.
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2. Enzyme–substrate reaction with one complex intermediate

To set the stage, consider a simple reaction between a substrate (S) and
enzyme (E) forming irreversibly a enzyme–substrate intermediate complex (C1),
which yields a product (P) plus enzyme. Schematically this reaction is repre-
sented by

S + E
k0→ C1

k1→ E + P. (6)

This reaction can be modelled by a simple set of ordinary differential equations
(ODEs). Define S as the concentration of substrate, E as the concentration of
enzyme, C1 as the concentration of complex and P as the concentration of prod-
uct. Then

dS

dt
= −r(S(t), E(t), t),

dE

dt
= −r(S(t), E(t), t) + k1C1,

dC1

dt
= r(S(t), E(t), t) − k1C1,

dP

dt
= k1C1.

(7)

Here r(S(t), E(t), t) is the reaction term. For notational convenience, define
R(t) = r(S(t), E(t), t). The aim of the analysis is to write the equation for P

in the form of a distributed delay equation:

dP

dt
=

∫ ∞

0
f1(z)R(t − z)dz, (8)

where f1(z) is the distribution of the delay. The ODE for the complex (7) can be
integrated from −∞ to t using an integrating factor:

[
C1ek1t

′]t

−∞ =
t∫

−∞
ek1t

′
R(t ′)dt ′. (9)

The left-hand side (LHS) evaluated at −∞ vanishes. Introducing the new vari-
able z = t − t ′ and cancelling a factor of ek1t , we have

k1C1 =
∞∫

0

k1e−k1zR(t − z)dz. (10)

Substituting this into the ODE for the product (7) yields a distributed delay
equation (8), where the delay is exponentially distributed:

f1(z) = k1e−k1z. (11)
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3. Enzyme–substrate reaction with two complex intermediates

We now consider the case where there are two intermediate complexes C1

and C2. Schematically this reaction can be represented by

S + E
k0→ C1

k1→ C2
k2→ E + P. (12)

This reaction can be modelled by a simple set of ODEs

dS

dt
= −R(t),

dE

dt
= −R(t) + k2C2,

dC1

dt
= R(t) − k1C1,

dC2

dt
= k1C1 − k2C2,

dP

dt
= k2C2.

(13)

The equation for C1 can be integrated and is given by equation (10). Inserting
this into the ODE for C2 and integrating from −∞ to t using an integrating fac-
tor, we obtain:

[
C2ek2t

′]t

−∞ =
∫ t

−∞
ek2t

′
∫ ∞

0
k1e−k1zR(t ′ − z)dz dt ′. (14)

The LHS evaluated at −∞ vanishes. Introducing the new variable v1 = t ′ − t + z

and v2 = z, then cancelling a factor of ek2t yields

k2C2 =
∫ ∞

v1=0

∫ v1

v2=0
k1k2e−k2v1e−(k1−k2)v2R(t − v1)dv2 dv1. (15)

Integrating with respect to v2 gives

k2C2 =
∫ ∞

v1=0
k1k2e−k2v1

e−(k1−k2)v1 − 1
k2 − k1

R(t − v1)dv1. (16)

Substituting this into the ODE for the product (13) yields a distributed delay
equation (8), where the distribution of the delay is

f2(z) = k1k2

(
e−k1z

k2 − k1
+ e−k2z

k1 − k2

)
. (17)

Note that if the rate constants k1 and k2 differ significantly in magnitude, further
simplifications can be carried out.
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4. Enzyme–substrate reaction with N-intermediates

We now consider the case where there are N intermediate complexes Ci ,
where i = 1, . . . , N . This reaction can be modelled by a simple set of ODEs:

dS

dt
= −R(t),

dE

dt
= −R(t) + kNCN,

dC1

dt
= R(t) − k1C1,

dCi

dt
= ki−1Ci−1 − kiCi, when i = 2, . . . , N

dP

dt
= kNCN,

(18)

where ki �= kj when i �= j . We now show that this system is equivalent to a
distributed delay system.

Proposition 1. The N -step reaction process (18) is equivalent to a distributed
delay system with

fN(z) =
N∑

i=1

kie−kiz

N∏
j=1,j �=i

kj

kj − ki

, (19)

where ki �= kj and N ≥ 2.

This is proved by induction. Assume true for N = m. Then

dCm+1

dt
=

∫ ∞

0

m∑
i=1

kie−kiz

m∏
j=1,j �=i

kj

kj − ki

R(t − z)dz − km+1Cm+1. (20)

This equation can be integrated from t ′ = −∞ to t using an integrating factor

[
Cm+1ekm+1t

′]t

−∞ =
∫ t

−∞
ek2t

′
∫ ∞

0

m∑
i=1

kie−kiz

m∏
j=1,j �=i

kj

kj − ki

R(t ′ − z)dz dt ′. (21)

Introducing the change of variable v1 = t − t ′ − z and v2 = z, cancelling a factor
of ekm+1t , and reversing the order of the finite sum and integration, yields

Cm+1 =
m∑

i=1

ki

m∏
j=1,j �=i

kj

kj − ki

∫ ∞

v1=0

∫ v1

v2=0
e−(ki−km+1)v2−km+1v1R(t − v1) dv2 dv1. (22)
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Integrating, we obtain:

km+1Cm+1 =
∫ ∞

0




m∑
i=1

(
e−kiv1 − e−km+1v1

)
ki

m+1∏
j=1,j �=i

kj

kj − ki


 R(t − v1) dv1. (23)

Next substituting the identity

m+1∑
i=1

ki

m+1∏
j=1,j �=i

kj

kj − ki

=
m∑

i=1

ki

m+1∏
j=1,j �=i

kj

kj − ki

+ km+1

m∏
j=1

kj

kj − km+1
= 0, (24)

[which is proved in the appendix] into equation (23) gives

km+1Cm+1 =
∫ ∞

z=0
fm+1(z)R(t − z) dz. (25)

Therefore by induction the distribution fn(z) equation (19) is true for all N ≥ 2.

5. The large-N intermediate limits

The final part of the analysis is to consider the limit of a large number
of intermediate complexes. The distribution function fN can be simplified and
the entire reaction sequence can be represented by a simple mechanism (i.e.,
standard law of mass action kinetics or differential delay system). Consider the
Laplace transform (i.e., moment generating function) of the distribution function
fN(z)

f̃N(s) =
∫ ∞

0
fN(z)e−szdz =

N∑
i=1

ki

ki + s

N∏
j=1,j �=i

kj

kj − ki

. (26)

We consider the case where all reactions are rapid with the exception of one
‘rate limiting’ step or bottleneck intermediate [20]. Since equation (19) is invari-
ant under reordering ki , we can set the first step to be the ‘rate limiting’ step
without any loss of generality. Set k1 = 1/τr , where τr is O(1), and ki = Nbi for
i ≥ 2, where 1/bi is O(1). Define

τ̄ =
N∑

i=2

1
ki

= 1
N

N∑
i=2

1
bi

. (27)

τr is the reaction time or timescale of the rate limiting step, and τ̄ is the total
reaction time of the other N − 1 steps. Note that τ̄ can be the same size as τr .
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The relative size of τ̄ and τr determines which simplified model approximates the
N -step reaction process. Rewrite equation (26) separating out terms involving k1:

f̃N(s) = 1
1 + τrs

N∏
j=2

Nbj

Nbj − 1/τr

+
N∑

i=2

Nbi

(Nbi + s)

1/τr

(1/τr − Nbi)

N∏
j=2,j �=i

bj

bj − bi

.

(28)

The first term can be approximated with

lim
N→∞




N∏
j=2

1
1 − x/(Nbj )


 = lim

N→∞
exp


−

N∑
j=2

ln
(

1 − x

Nbj

)
 = exτ̄ + O(1/N).

(29)

The second term can be written in terms of partial fractions to give

f̃N(s) = eτ̄ /τr

1 + τrs
+ 1

1 + τrs

N∑
i=2

(
bi

1/(Nτr) − bi

− bi

−s/N − bi

)

×
N∏

j=2,j �=i

bj

bj − bi

+ O(1/N). (30)

Next consider the identity

lim
N→∞




N∑
i=2

bi

y/N − bi

N∏
j=1,j �=i

bj

bj − bi


 = −e−yτ̄ + O(1/N), (31)

which we prove in the appendix. Substituting into equation (30) and cancelling
terms yields

f̃N(s) = e−sτ̄

1 + τrs
+ O(1/N). (32)

This is easily inverted using the Bromwich integral to give

fN(z) ≈
{

0 for 0 < z < τ̄ ,
1
τr

e(τ̄−z)/τr for z > τ̄ .
(33)

Note that this distribution is now only a function of τr and τ̄ suggesting that
there is a simplified model with the same distribution function.
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6. Distinguishable and equivalent reaction mechanisms

The distribution function (33) can now be compared with distributions
of simplified reaction mechanisms. When τr � τ̄ the rate limiting step is much
greater than the sum of all other steps, so

fN(z) ≈ e−z/τr

τr

. (34)

This equation is the same as the Van Slyke–Cullen model of enzyme action with
one intermediate.

Next, consider the opposite case where τr 	 τ̄ . In this case, although the
‘rate limiting’ step is greater than any of the other single steps, the combined
time of all the other steps is much greater. In this limit the distribution function
becomes

fN(z) ≈ δ(z − τ̄ ), (35)

where δ(z) is the Dirac delta function. The rate of change of P equation (8) is
then given by

dP

dt
= R(t − τ̄ ), (36)

which is a simple differential delay equation. This reaction can be represented
schematically by

S + E
delay−−→ P + E, (37)

which is a version of the Brown model for enzyme action proposed by Rous-
sel [17].

The final case is when τr and τ̄ are approximately the same size. Consider
the reaction

S + E → C
delay−−→ P + E, (38)

which is the Brown model of enzyme action [2]. The equations for the rate of
change of complex and product are

dC

dt
= R(t) − C(t)

τr
,

dP

dt
= C(t−τ̄ )

τr
,

(39)

which is a differential delay system. A simple calculation reveals that this system
is equivalent to a distributed delay system with the same distribution function
as equation (33).

Our analysis has demonstrated how simplified models for enzyme kinetics
can be derived as limiting cases of an enzyme–substrate reaction with
N -intermediates. It has also shown that the rate of product formation for reaction
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mechanisms with one, two or multiple reaction mechanisms can be written in the
form of a distributed delay differential equation. The shape of the distribution of
the delay is determined by the relative sizes of the rates of the individual reactions,
and could be employed to distinguish between tentative reaction mechanisms.

7. Discussion

The central dogma of chemical kinetics is that reaction mechanisms can
never be proven, but can only be disproved. This is certainly true for enzyme
catalysed reactions with multiple intermediates studied by quasi-steady-state
kinetics [4,12]. The mechanism of enzyme action is defined when all the inter-
mediates are characterised and rate constants are determined.

Biochemists tried to detect the intermediates and to measure the rate con-
stants with pre-steady-state kinetics experiments. If the intermediates are directly
observed, their half-life and rates of decay and formation measured, experiments
can be use to test a particular mechanism. One of the limitations of this approach
is that on certain occasions intermediates can remain undetected due to their low
concentration or they are beyond the timescale of the measurements [21].

In this paper, we wrote the rate equation for product formation in the
form of a distributed delay equation for enzyme–substrate reaction mechanisms
involving multiple complexes. We found that the form of distribution of the
delay is characteristic for each reaction mechanism and determined the condi-
tions under which a number of reaction mechanisms are equivalent. We must
emphasise that a particular distribution of delays does not give a unique reaction
mechanism, but can tell us about the number of intermediates involved in the
reaction mechanism and the relative sizes of the individual rate constants. From
these results, a new experimental approach could be envisaged where the distri-
bution of the delay in product formation is studied to distinguish a particular
reaction mechanism.

The imposition of delays in the governing equations of a reaction does not
alter the reaction mechanism, as have been shown in a number of studies on the
effects of delayed feedback in chemical systems [17,20,22,26,28]. The use of a
delay feedback has previously been employed as a means by which to probe a
reaction mechanism by determining the elements of the stationary-state Jacobian
matrix elements and inducing oscillations by delayed feedback [29]. One of the
major limitations of the latter approach is that it requires the precise measure-
ment of chemical species which may be quite difficult to detect, such as inter-
mediates and radicals. The new methodology we are proposing does not require
the detection of intermediates: it requires the measurement of the delay resulting
from the formation and decay of reaction intermediates. This paper is the first
contribution to a number of new kinetic approaches leading toward the deter-
mination of reaction mechanisms for enzyme catalysed reactions.
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Appendix

The identities (24) and (31) involving sums of products of numbers are now
proved. Define the function

pN(x) =
N∏

i=1

(x − ki), (A1)

where N ≥ 2 and ki are distinct and positive. Consider 1/p(x) expanded as a
sum of partial fractions [30]:

1
p(x)

−
N∑

i=1

1
(x − ki)p′(ki)

= 0, (A2)

where p′(ki) is the derivative of p(x) evaluated at ki , and ki �= kj when i �= j .
This is proved by considering the complex function 1/p(z), which is a meromor-
phic function containing n simple poles at x = ki with residue 1/p′(ki). The LHS
of equation (A2) is then a holomorphic function which is bounded and tends to
0 at large x, so by Liouville’s theorem it is 0 in the whole complex plane. Next,
take the limit x → ∞ and equate powers of O(1/x) (note n ≥ 2)

N∑
i=1

1
p′(ki)

=
N∑

i=1

N∏
j=1,j �=i

1
ki − kj

= 0. (A3)

Multiplying by
∏N

i=1 kj yields identity (24). Next, substitute x = y/N , take the
limit N → ∞ and equate O(1) terms. The first term of equation (A2) yields

N∏
i=1

1
y/N − ki

=
N∏

i=1

1
−ki

N∏
j=1

1
1 − y/(Nkj )

= (−1)Ne−yτ̄

N∏
i=1

1
ki

+ O(1/N), (A4)

where

τ̄ ≡ 1
N

N∑
i=1

1
ki

, (A5)
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and we have used equation (29). Finally, insert equation (A4) into equation (A2)
and re-arrange to give

lim
N→∞




N∑
i=1

ki

y/N − ki

N∏
j=1,j �=i

kj

kj − ki


 = −e−yτ̄ + O(1/N), (A6)

which is identity (31).
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